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Abstract

The relationship between teachers' and students' personal constructs regarding intrinsic motivation in the

mathematics class were examined. Participants were sixmiddle-school mathematics teachers and 30 students: Three

highly motivated students and three lower motivated students from five classes.

Videotape, direct observation, individual interviews, and repertory grid tasks focused on the ways in which

teachers attempted to build their students' motivations into their lessons, and the belief systems of teachers vs.

students. Recent mathematics activities for each class served as elements for construct elicitation in the repertory

grid task. Teachers and students were presented with random pairs of activities and were asked to determine what

made one activity more fun than the other. Responses (constructs) were entered into a computer program that paired

each activity with each construct and asked participants to rate how well each construct described each activity.

Results revealed that the individuals studied whether teachers or students, were similar in their constructs

systems. Despite the similarities, the differences that were apparent seem to be problematic to the extent to which

teachers can anticipate the motivation of their students. Teachers did pay attention to motivating their students in

developing their lesson plans, but the ways in which they attempted to build motivating exercises seem to be more

dependent upon teachers' personal conceptions of intrinsic motivation rather than their beliefs about their students.

Most of the studied teachers had little notion of the motivational beliefs of their students.

Teachers' and students' cognitive organization of constructs supported the model proposed by Middleton,

Littlefield, & Lehrer (1992). Both students and teachers tended to stress the interrelationship between arousal and

control levels in determining the intrinsic motivation of mathematics activities. Results are examined in relation to

the need to inform teachers regarding the dynamics of student motivation, and to pay particular attention to the

individual differences in students' motivational beliefs. In general, results indicate that when teachers are able to

predict their students' beliefs, they are better able to fine tune their instruction to turn kids on to mathematics.
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Teachers' vs. Students' Beliefs Regarding Intrinsic Motivation

In the Mathematics Classroom: A Personal Constructs Approach

James A. Middleton

University of WisconsinMadison

Research has shown that when children are motivated intrinsically to perform an academic activity, they

spend more time engaged in the activity, learn better, and enjoy the activity more than when they are motivated

extrinsically (Lepper, 1988). Clearly, getting children to engage in learning "for its own sake" is a primary goal for

educators in that not only will children learn better at the immediate task, they will also tend to seek out similar

activities in the future. Thus, designing intrinsically motivating activities is of paramount importance for reaching

the goal of developing life-long learners.

It is unclear, however, just why children prefer intrinsically motivating activities. Is it because there is

something "intrinsic" to the activity that induces them to engage, or might it be that the activity affords certain

characteristics that fits the individual's notion of motivation. The distinction between these two cases may seem

trivial at first. Does it really matter to the educator if the motivation stems from the activity or from the child? In

the case of mathematics, it seems that yes, it really does matter. Descriptive studies have shown that some children

enjoy mathematics, seek out mathematical problem situations, and excel, while others ("math anxious" students) have

a real fear of mathematics, and thus avoid engaging in mathematical problem situations, and ultimately fail (Hoy les,

1981; Widmer, 1980). In addition, the utility and importance of mathematics is at least acknowledged by students

even if not understood completely, yet this knowledge is not sufficient to motivate them to continue taking

mathematics courses (Dossey, Mullis, Lindquist, and Chambers, 1988). If "mathematics" is intrinsically motivating

to some students, but not for others, it seems unlikely that there is any factor inherent to mathematics that is

motivating to all children. It is reasonable to assume then, that individual differences among students, and the ways

in which mathematics education compliments these differences determines to a large extent the degree to which

mathematics is motivating.

In an earlier study, myself and colleagues (Middleton, 1990; Middleton, Littlefield, & Lehrer, 1992) studied

gifted 4th and 5th graders' personal constructs regarding fun in academics. This work was an attempt to test a theory

of how academic activities come to be regarded as fun. We hypothesized that children's conceptions of academic

intrinsic motivation would tend to be organized into three constructs, reflecting their interests, the degree of personal

control afforded by an activity, and the degree to which the arousal afforded by the activity was optimal for

engagement.

Cluster analysis revealed that children tended to organize their constructs into three general categories:

Arousal, or the cognitive stimulation afforded by an activity; Personal control, the degree to which the activity was

considered a free choice or of appropriate difficulty; and a loosely defined construct the we termed Interests,
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pertaining to the degree to which the students liked the activity, the importance of the activity, and their ability at

performing the activity.

We also fourd that students, and girls in particular, seemed to identify with their teacher in evaluating the

motivational value of academic tasks. In addition, we found that children tended to rate mathematics as less fun as

they progressed from elementary to junior high school.

From the results of the study, a model of academic intrinsic motivation was developed. We suggested that

children construct representations of the motivational value of academic activities, and use these representations to

.evaluate whether it is worthwhile to engage in the activity for its own sake (See Figure 1).

First, given the possibility of engaging in an activity, the person must ascertain whether or not they have

classified the task as funs -- intrinsically motivating earlier, i.e., they will attempt to ascertain its "fit" with their

constructed interests. If an "interest" match is found, the label of "Fun" is placed on the activity, and the individual

can engage without further evaluation. If a "not an interest" match is found, the label of "Not Fun" is placed on the

activity and the person will exit the system.

If the activity does not match any of the entries in the interests construct, it must be evaluated on the

perceived degree of arousal and the perceived degree of control it affords the individual (i.e., how meaningful success

in the activity will be). In general, if an individual has never entered into an academic activity, she will tend to

evaluate the stimulation (challenge, curiosity, fantasy) it provides, and the personal control (free choice, not too

difficult) it affords. If both domains are perceived to be adequate, then she will place a tentative label of "fun" on

the activity and enter into it. While engaged, the individual constantly monitors arousal and control. If either

condition becomes insufficient (or too much as in the case of so much control the task becomes boring), she will

attempt to disengage from the task, unless some extrinsic motivator (grades, coercion) influences her to continue.

If, however, arousal and control conditions are met consistently, the individual may choose to place the

activity into her interests. Then, if she gets the opportunity to enter into the activity in the future, she need not

evaluate it. She me

be fun.

rely has to check for a "match" in her interests construct, and engage, assuming the activity will

So far, I have discussed the processes by which a mathematics activity can become classified as an interest.

Unfortunately, our current knowledge indicates that children seem to remove mathematics activities from their

interests as they grow older. What processes might affect this declassification? Although untested as yet, with a

few modifications, our model may also explain this tendency. McCombs and Marzano (1990) present a model of

student task-evaluation similar to our own. They postulatP that the individual evaluates activities based on their

relevance to the self-system and the degree of threat the activity presents. If the activity is perceived to afford low

'Throughout this paper,. I will use the terms "Intrinsic Motivation" and "Fun" interchangeably. The colloquial
term "Fun" is better understood by students and teachers (and researchers), and carries connotations of positive affect
that "Intrinsic Motivation" may not.
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relevance (i.e., is unimportant), and presents a high threat to the self, then they will engage in compensatory activities

to maintain the self-system (i.e, will have little motivation to engage in the task).

Under our framework, the arousal/control interaction optimizes the task relevance by providing sufficient

challenge and personal control. Using Kelly's (1955) Choice corollary2 as the agert that provides some synthesis

of ideas, activities that are perceived as motivating will be perceived as being relevant to the extension of the

individual's construct system (i.e., they provide st:mulation), and will present little threat because they are under the

control of the individual. Conversely, activities that are not perceived as motivating will provide little relevant

information (little stimulation), and/or will not be controllable by the individual. Thus, when mathematics is

originally included as a student's interest (i.e., when the student anticipates that mathematics activities will be fun),

and when the student is presented with activities that provide little stimulation or control, the strength of activation

of "mathematics" as an interest will be decreased with each successive activity.

The preponderance of students' recollections of bad experiences regarding school mathematics (e.g., Hoy les,

1981) explains in part why students tend to decrease in their liking of mathematics as they get older, and why

enrollment in higher level mathematics courses has declined. Students do not see mathematics as being integral to

their academic self-concept, and they try to avoid the anxiety caused from involvement in mathematical tasks. In

addition, since students tend to attribute causal relationships between their motivational attitudes and their teachers'

attitudes, it seems likely that some degree of mismatch between students' motivational constructs and their teachers'

constructs accounts for this perception.

The three domains contributing to students' perceived intrinsic motivation have turned up elsewhere in the

literature on motivation. Hidi (1990) for example, discusses the positive effects of individual interests on motivation

and learning within the interest domain. However, she rejects the incorporation of individual interests into the

classroom milieu as being impractical, especially when the teacher-student ratio is high. Instead, she focuses on the

"interestingness" of academic tasks: The degree to which a task elicits curiosity and attention. Hidi suggests that

this task-specific interest is based on the degree of arousal generated by presentation of the task. Her description

of task-specific interest is echoed by other researchers. Malone's (1980, 1981) notion of the arousal producing

conditions of challenge, fantasy and curiosity contributing to intrinsic motivation is highly similar. Likewise,

Anderson, Shirey, Wilson, and Fielding (1987) suggest that four attributes contribute to interest: Novelty, activity

level, character identification, and life themes. Like the model proposed in Figure 1, these attributes focus on arousal

(stimulation) and control level. In our framework, Hidi's task-specific interest is elicited by the student's evaluation

of arousal and control levels, and individual interests is conceptualized as developing from consistent patterns of task-

interest.

2Kelly's Choice corollary maintains that, given a choice between two alternative constructs, an individual will
choose that construct that serves to extend the utility of the system, and will reject the construct that does not extend
the system, or that serves to undermine the system.

7
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Since the perception of being intrinsically motivated is determined by the individual, it seems reasonable

to assume that individuals with differing "Interests" define motivating activities in different ways. This seems

especially true for students vs. teachers. The focus of this paper is -a discover both teachers' and students' beliefs

about what makes the study of mathematics motivating intrinsically such that similarities and differences can be

distinguished. The degree to which a student's conception of intrinsic motivation is similar to the teachers'

conception is hypothesized to contribute to the intrinsic motivation exhibited by the student in the mathematics

classroom.

Method

Participants

Participating teachers were volunteers, solicited from five middle-school mathematics classes (one 6th grade,

two 7th grade and two 8th grade) in a nu-al Wisconsin school district Each teacher was paid a small honorarium

of $30 for their participation to be used for purchasing classroom materials for the classes studied. Two of the

teachers taught one of the studied classes in a team fashion.

Teachers were asked to rank order their students based on their perceptions of their students' motivation

to learn mathematics. Six students, three ranking highest in perceived motivation, and three ranking lowest, were

selected from each class. The two groups of students were matched on ability within each class to eliminate stable

ability biases. Thus, the total number of participants was 36: One teacher and six students from each class (plus

one extra team-teacher). Eight students and one teacher did not complete all of the data collection tasks, so their

data will be presented in its incomplete form where appropriate.

Procedure

Classroom Observation and Videotaping. Prior to individual data collection, each teacher's class was

observed and videotaped for one 43-minute period. Each visit was scheduled such that the lesson observed would

be what the teacher considered "typical" of their mathematics class. During the lesson, the experimenter made field

notes describing the classroom atmosphere, the content covered, the overall motivation of the class, and the teachers'

attempts to motivate their students.

Initial Teacher Interviews. Each teacher was interviewed individually. As stated above, teachers were asked

to rank order their students based on their perceptions of the students' motivation to learn mathematics. This

procedure was chosen deliberately to build in the bias of the teachers to the study. Teachers were asked whether

these students identified were different in mathematical ability, and students with widely disparate abilities were

eliminated, and other students substituted such that the final pool of students in each class were matched fairly

closely on ability. Gender, however has been shown to be an important differentiating factor in the motivation
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literature (see Fennema & Peterson, 1985), so no attempt was made to match students on gender across groups. The

number of males and females did differ for the two groups, with males representing a significantly higher proportion

in the lower motivated group (10 males versus 5 females), while females represented a higher proportion in the

highly motivated group (9 females and 6 males).

Following the ranking procedure, teachers were asked to list the ten mathematics activities they covered for

the previous month of instruction they felt were the most important, including the videotaped lesson. Some teachers

who worked on several larger projects elected to list activities they performed earlier in the semester to provide a

significant number of activities for analysis. After the lessons were articulated, each teacher was asked the following

questions:

1. Please describe your lesson plans you made for teaching the videotaped lesson.

The teachers were presented with the videotaped lesson and were asked to describe the process they went

through as they developed their plan for teaching the lesson. Teachers' plans were tape-recorded, and paper was

provided for teachers to organize their thoughts.

2. Please rank the follcwing considerations in the order of the importance you placed on them when
you developed your plan.

A. Mathematical Content.
B. Student Abilities.
C. Student Motivation.
D. Method of Instruction.
E. ManipulativestVisual Aids.

This question served as a springboard for the following questions. The primary interest here was not on

the rank order, per se, but to get teachers to think about motivation in relation to their other lesson-planning goals.

3. 1 notice you have ranked student motivation number (number here]. Can you tell me why you
placed this relative importance upon it?

Question number 3 was developed in order to allow teachers to explicate their beliefs regarding the

importance of motivation in the process of instruction. It was hoped that responses to question number 2 would

illuminate the general process teachers go through in developing their lesson plans.

4. How did you account for the motivational characteristics of your identified students [names here]
in developing your plan?

Question 4 was aimed at getting the teachers to focus on their highly motivated students and their less

motivated students, and to describe how their plans might differ for the two groups. This was also used in

conjunction with teachers' ratings on their students' repertory grids (to be described later) to determine how teachers'

beliefs regarding their students' motivation are translated into action.

5. How do you normally account for the motivation of your students in your classroom?
A. How do you account for your students' interests?
B. How do you stimulate your students in mathematics?
C. What control do you give your students in your instruction?

i. Choice of activities?
ii. Tailoring activity requirements to ability?



Question 5 was aimed at gathering more broad description of the lesson planning strategies of the teachers.

It may be that planning for the videotaped lesson is quite different from planning for lessons in general. This

information should illuminate difficulties teachers have in motivating large numbers of their students. In addition,

it was designed to direct teachers' attention to aspects of intrinsic motivation relevant to the model of academic

intrinsic motivation presented in the introduction (Figure 1).

6. How do you define motivation in mathematics?

Question 6 was designed to uncover teachers' overall views towards what motivation is, and to determine

what factors contribute to their ratings of their students' motivation. In addition, this question was designed to

determine if aspects of intrinsic motivation are considered important to teachers' definitions of mathematics

motivation.

7. What do you know about student motivation?

This question was asked to garner information regarding the level of knowledge teachers have gleaned from

their coursework, inservice experience, or outside reading pertaining to motivating students in the classroom.

8. Have you had any formal training in motivation?

Going beyond informal knowledge, question 8 is intended to get an idea of the level of formal training

teachers may have had in their teacher education courses.

9. Additional comments regarding the videotaped lesson, and/or teachers' philosophy of education.

Question 9 was designed to put teachers' beliefs and knowledge in perspective with their overall orientation

towards education, and especially their role in educating students.

Student Construct Elicitation and Ratings. Procedures were adapted from those outlined by Kelly (1955).

Students worked individually on both the construct elicitation task and the construct ratings task. Student were

presented with each of the ten activities provided earlier by their teachers to anchor students' constructs in the

instructional sequence, and to provide a basis of comparison to teachers' constructs. Dyads of activities were

presented at random on a written form, and the students were asked, "'What makes the first activity more fun than

the second?" The number of dyads varied for each class due to the number of important activities the teachers

generated. To eliminate fatigue and frustration, the number of dyads presented was limited to 20.

Students' responses to the dyad presentations (constructs) were entered into a computer program that

randomly paired each of their constructs with the activities proffered by their teachers (see Lehrer & Guckenberg,

1988 for a more detailed explanation of the computer program). All possible combinations of constructs and

activities were rated. The program presented the students with each construct and asked them to rate on a scale of

1 to 5 (1 = lowest rating, 5 = highest rating) how well each construct described the activity. For example, if

problem-solving was one of the ten activities engaged in over the past month, and if that student also indicated that

one of her constructs that defined fun was "I am good at it," she would be asked to rate how well the construct "I

am good at it" describes "Problem-solving? To reduce boredom, the students were allowed to quit the ratings task
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if they liked, and return to it at a later time. Ratings were automatically entered into a dam matrix file.

Teacher Construct Ratings. The procedure for eliciting teachers' personal constructs followed the same

format as that of the students. Teachers were presented with the same written elicitation form as their students.

Teachers' responses to the elicitation (constructs) were entered into the computer program described above, and

teachers were asked to rate on the I to 5 scale how well each of their constructs described each activity.

Following their own personal constructs ratings, teachers were given copies of each of their students' unrated

computer programs. Teachers were asked to rate each construct/activity pair presented as they perceived the student

would.

Analyses

An additive clustering technique (e.g., Sattath & Tversky, 1977; Lehrer, 1988) was applied to the ratings

matrices. The distance metric used compares the proximities between constructs by taking into account all other

constructs in the analysis (Lehrer, 1988). Constructs that are simultaneously close to each other but distant from

other constructs are considered most proximal. This comparative distance has distinct advantages over traditional

distance metrics in that it performs fewer transformations on the original data. For example, most methods use an

average distance metric for determining cluster membership. By using average distance, the clustering algorithm

would be unable to distinguish between two extreme ratings and two middle ratings with the same average value.

Further, many metrics force original data which may be asymmetrical into a symmetric distribution. Comparative

distances are more consistent to the original data (and therefore to the cognitive representation that generated that

data) in that they do not use averaging techniques to create the distance metrics.

The additive algorithm was chosen to extract clusters of constructs because it is less restrictive than

hierarchical or complete clustering algorithms. Additive techniques allow for constructs to be included in more than

one cluster, which seems to be more reflective of human thinking.

For example, in the proposed model of intrinsic motivation, perceived arousal and perceived control are

highly interrelated. A construct such as "It is challenging" may be seen by a child as providing an optimal level of

arousal (neither too high nor too low). It may, however, be seen concurrently as providing a facilitative degree of

control over the activity by not being too difficult to prevent success. To detect this relationship between domains

in a cluster analysis, the algorithm must be capable of placing the construct into more than one cluster.

Proximities between constructs are displayed using an additive tree graphical representation. Such a

representation provides a visual indication of the hierarchical structure of students and teachers' representations of

intrinsic motivation in mathematics. By examining both the type of constructs elicited, and their organization,

similarities and differences between students' and teachers' beliefs can be explicated.

Teachers' ratings of their students' repertory grids were also subjected to the additive clustering. By

examining the structure of the teachers' ratings vs. the students' ratings, one can determine the degree of similarity
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between students' motivations and teachers' beliefs about students' motivations both descriptively (i.e., how similar

are clusters for teachers vs. students?), and empirically (through correlational analysis of ratings).

Pearson correlations were computed by pairing cells in the teachers' predictive grids with cells in each of

the students' grids. It was predicted that the correlation between high motivated students' and teachers' ratings

would be significantly higher than correlations between low motivated students' and teachers' ratings.

Teachers' responses to the interview questions were transcribed and analyzed with reference to their own

construct organizations, students' construct organizations, and the teachers' ratings of their students' constructs. It

was hypothesized that teachers' constructs regarding intrinsic motivation in their mathematics classes would be

congruent with the types of activities teachers design. For example, if teachers place a heavy emphasis on

stimulation, then they should design activities that provide novelty, curiosity and fantasy. However, research is

divided upon whether teachers' plans will reflect any of their beliefs regarding their students' motivations. Clark

and Peterson (1986) for example, reviewed ten research studies regarding teachers' plans. They reported that

teachers focus primarily on content goals, and secondarily on learning objectives. Very few studies reported teachers

focusing on student motivation.

It may be that teachers do not place a heavy degree of emphasis on student motivation in making their

instructional plans. If this is true, then evidence of congruence between students' constructs regarding fun in

mathematics and their teachers' constructs could be one possible determinant of student motivation--i.e., if a teacher

does not take their students' motivation into account, then the more similar their constructs regarding the motivational

value of mathematics are to their students', the easier it will be for the teacher to motivate their students.

If teachers' do place a heavy degree of emphasis on student motivation in their lesson planning, then

congruence between their planning strategies, and their students' constructs could be considered evidence of the

motivational facility of their plans.

Results

The results of the study are problematic with respect to reporting in a concise fashion. Each teacher's

classroom represents a separate case, independent of the other teachers'. Thus, a detailed report of each case is not

feasible for the scope of this paper. However, commonalities did become apparent across cases, and these

commonalities form a principled set of conclusions that serve to inform theory, and that suggest ways in which

teachers can begin to raise the motivational level of their mathematics classes. I will describe a single case--Mrs.

Morris' classroom as an example of the richness of data uncovered in this study, and to provide a flavor of just how

teachers' and students' beliefs play out in the mathematics classroom. Following this description, I provide a

summary of the results, pointing out commonalities among the five cases, and highlighting some of the important

differences. Now, let's take a look at Mrs. Morris' class.
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Classroom Observation and Videotape

Mrs. Morris' Classroom.

The following excerpts from the experimenter's field notes describe the overall structure and conduct of Mrs.

Morris' classroom.

Mrs. Morris is an experienced mathematics teacher. She originally taught high school mathematics for four

years, then took ten years off. After her hiatus, she went back to teaching, this time in the middle grades. She has

been teaching 7th grade mathematics and science for three years.

Her classroom can best be described as a blend of order and disorder. The desks are in neat rows; special

mathematics and science problems; and student work are displayed prominently on the walls, ceiling, and any

available counter space. Motivational posters were strategically placed by the students' work. Examples of these

include: Math is Far Out! Do you have a direction, a plan, a goal? Or, are you just taking any path? Dream,

Prepare, Apply. Weigh your options, learn math. In addition, Mrs. Morris has an IBM computer station at the back

of the room with three networked personal compaters. One-half hour prior to class, these stations were full of kids

working on mathematics and science reports.

The class was organized according to four stations where children worked in small groups of approximately

6 students: The Computers, a Problem Solving Station, an Activity Station, and one for Bookwork. Mrs Morris

rotates children from station to station each day so that each child has the opportunity to work at each station by the

end of the fourth day of the unit. On the fifth day of each unit, children take a quiz on the material covered. At

the start of the period (the first in the day), after the announcements and role-taking, Mrs. Morris very specifically

outlined the objectives of the unit, and reminded the students where they were with respect to stations. Students

rushed to their stations with some alacrity, and very quickly got on-task. Students stayed on-task for most of the

period, with some intermittent rambunctious play.

During their work, students' conversations were mostly on the task at hand. Students were encouraged to

help each other as far as checking answers and explaining problems. Some children did elect to work alone...for

a while, but the structure of the problems (which will be addressed later on) influenced most to seek out their

classmates.

At the end of the period, Mrs. Morris assigned a journal entry. Children were asked "What is still confusing

that you need to figure out Monday?" Five minutes was set aside for writing answers. The last five minutes of the

period were filled with more announcements of an upcoming field trip, free talk, busywork, and finishing up the

journal entries.

Teacher Interview

3An example of an extra credit mathematics problem: If you slice off each corner of a block of cheese, how
many faces, edges, and vertices will the new figure have?
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Question 1. Please describe your lesson plans you made for teaching the videotaped lesson.

Mrs. Morris plans start with the mathematical content. She first determines two to three concepts she can

cover in four days, and then goes to the book and assigns pages that coincide with those concepts for the Bookwork

station, including worksheets and book assignments. She then develops activities that involve physical manipulation

of some object pertaining to the content, and assigns them to the Activity station. Since the observed lesson was

on symmetry and space, examples of activities include designing and constructing their own 3-dimensional figures

and determining their line symmetry. Students were free to choose any common geometrical form, or they could

develop their own shapes. The Problem Solving station was structured such that students needed to go above and

beyond the content objectives. For example, students were given paper figures, and were asked to determine the line

symmetry of the figures, ranging from stars to circles, etc. Mrs. Morris reserves the Computer station as a review

station. Students on the computers were presented exemplars and non-exemplars of geometric figures to define

features of circles: Chords, radii, diameter, etc. The computer program allowed several exploratory tries before

giving a rule.

When probed to explain why she chose to divide the class up into four stations, Mrs. Morris replied that

she chose the stations as a method of incorporating the computers in the classroom as a motivating factor. She

would rather have had three stations, but the small number of computers necessitated creating another station so that

the maximum number of students at any computer would be two to avoid chaos at the back of the room.

Question 2. Please rank the following considerations in the order of the importance you placed on
them when you developed your plan.

A. Mathematical Content.
B. Student Abilities.
C. Student Motivation.
D. Method of Instruction.
E. ManipulativesIVisual Aids.

Mrs. Morris ranked student motivation number four, behind mathematical content, manipulatives, and student

abilities. Her reasons for its relative placement reveal that she pays specific attention to student's abilities and

appropriate manipulatives/visual aids for those ability levels. She feels that appropriate challenge motivates her

students of diverse ability levels. These responses are further illuminative with respect to the third question.

Question 3. How did you account for the motivational characteristics of your identified students in
developing your plan?

Mrs. Morris feels that she doesn't have to worry about her highly motivated students. She stated, "I can

tell them to do the book for the whole day, and they do it." So, she concentrates more on her less motivated students

in developing her plans. She tries to think of activities that will keep them on task such as extensive work with

manipulatives on more concrete tasks.

As stated before, one of the reasons for creating the stations was to help motivate kids by placing them on

the computers. However, Mrs. Morris discovered other benefits of her class structure.

I find that when we do whole group activities, and incorporate a lot of book work, they (the high group)
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get bored too, because they are beyond what the average one is doing. So, doing the stations has a real
tendency to be able to go beyond and do more enrichment activities...In the Problem-Solving station, I try

to make that my enrichment station. So, it frustrates my middle-level kids B,ut...each group has a higher-

level person in that, and the higher-level person will usually take it and continue with it. The other ones,
they'll do it while the person (high level) is there to help them with it and then usually they'll terminate.

As we delved further into the difficulty of taking the individual differences of 30 kids into account when

designing instruction, Mrs. Morris alluded to an important theme in her conception of student motivation in

mathematics: Expectations.

Question 4. How do you normally account for the motivation of your students in your classroom?

Before I went to this type of concept with the stations, I used to do a problem-of-the-day which seemed to

be a motivator to get them into it and get them started...But it ended up getting real routine. I lost my good
kids faster. They would get done, and then they would get absolutely bored. The ones that are not
motivated are struggling a little bit now...they're kind of bottomed out now, but they are starting to come
back because they know what the expectations are.

When asked to elaborate on this further, Mrs. Morris commented on students' initial confusion when she

initiated the stations. Because students did not know what she expected at the end of a unit, they "were kind of like

fish out of water," She then began laying out her expectations explicitly at the beginning of each class period.

...And that they knew what was expected so that when the quiz came up, those things would be on it, they
should know them. And it seems to be helping out. They seem to know where to focus their attention, and
those that want to go beyond can. But they still get the core activity.

So, she attempts to keep students on-task with respect to content and activities by making them aware of

the expectations before-hand, and then she refocuses at the end of the day to discover what students still do not

understand so that groups can concentrate directly on the difficult areas.

Question 5. How do you account for your students' interests when you develop your plans?

Mrs. Moths' attention to ability differentials becomes evident in her responses to this question. Because

her students are ability grouped, she focuses on activities that are a bit harder for the more able students, activities

that are concrete and more basic for the less able, and a combination of the two for the average students. As will

become clear later, this attention to challenge is integral to Mrs. Morris' personal conception of what makes

mathematics motivating.

Questions 6 and 7. How do you stimulate your students in mathematics; and What control do you
give your students in mathematics.

When Mrs. Morris was asked how she stimulates her mathematics students, after an initial flippant remark

about Fridays bring a primary stimulant, she immediately referred to the computers:

They (the students) can make something work, and it (the computer) doesn't really judge them. They can
go back and redo it. It takes them step by step, and I think it makes them feel pretty successful.

In addition to Mrs. Morris' attention to the matching of ability with task requirements, she tries to provide

some range of activities that students can choose from...when they finish the core requirements:
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I would say though, that the only time they focus on math (in the free choice activities) is when they are
on the computers. If they are at the other stations, I don't see them going beyond and trying something
different.

I think the activities have to be varied which I think the computer does. I mean it can vary, you can turn
it on and off, or do whatever to switch. And they have control. That's one nice thing about the kids. They
have control over that You can direct them, but they end up taking charge. And I think it is a motivator
for children. When they feel they are taking charge of something, and they are in control

As stated before, Mrs. Morris initially perceived the computer station as a motivator for her class, and the

students' reactions confirmed those initial perceptions. So, her beliefs in their value for her class has strengthened

over time.

Question 8. How do you define motivation in mathematics.

Mrs. Morris has strong beliefs that students' home environment is the major determinant of their motivation

in her mathematics classroom: Some adult that has high expectations for them to succeed. Without that home

influence, Mrs. Morris feels that is nearly impossible to reach all of her students.

Well, I think that motivation comes from within. Activities that we do to stimulate them to do things, that's
outside. But, wanting to achieve, wanting to do better, that comes from the inside, and I think that comes
from whoever the home people are for that student. I think we are fooling ourselves in education if we
think we can replace that. Some of us are able to key in on one or two kids, but other than that, unless the
class sizes get down to where you can get one-to-one, and have these expectations for each one where they
feel individual, and they feel special, I don't know if the motivation is there.

When asked if she could relate any instance where she saw a child change their motivational pattern, Mrs.

Morris related examples of two children she had during that school year "Ones who decided to check out." But

as she initiated contact with the students' parents, and mutual expectations were set, consistent with her beliefs about

the influence of the home, the students started to become more on-task.

They have the desire to finish and get it done...basically when severe consequences are involved. You
either have positive ones or negative ones. Usually, they go for the positive ones.

Question 9. What do you know about student motivation? Have you had any courses or formal
training in motivation?

Mrs. Morris has had no formal training in motivation outside her preservice education classes.

Question 10. Additional comments, teachers' philosophy of education.

Mrs. Morris' philosophy of education reflects her belief that she should be an example for the students, not

only academically, but in other areas of life as well.

I consider myself...I need to be a role model for them in all areas. I try to show them that I enjoy math.
When we try to solve some problems, or if I come up with a wrong answer, we don't have a coronary
because it wasn't right on. Or we try to figure out where we went wrong. Some of them have a tendency
to think that when you get a wrong answer then its too late. To be able to go back and redo is important.
But also socially. I mean I want to set the example for them. I'm the type of person I think they should
shoot for. I'm not perfect, that's for surel But I certainly would hope that out in town...that if they saw
me that they would be happy that I'm their teacher.
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Mrs. Morris' Construct Organization

Figure 2 illustrates the organization of Mrs. Morris' personal constructs regarding intrinsic motivation in

her mathematics classroom. As the three distinct branches of the tree diagram illustrate, three clusters of constructs

emerged from the additive analysis. From the constructs' proximities to each other, it seems that Mrs. Morris, in

concert with her beliefs regarding ability and task difficulty alluded to in the interview, organizes her beliefs with

respect to these themes. For example, "It has a high skill level," and "It takes more thought" deal with high task

difficulty, and constitute one of the three construct clusters in the diagram. "It is more tedious than other topics"

deals with low task difficulty or monotony, and was organized closely to "It is too much eye work," another aspect

of tedium. Both of these constructs were related to "It saves me mega time," referring to a tasks efficiency at

reducing tedium.

Interestingly, "It is fun" was organized closely to "It is more hands on than other topics," "It uses higher-

thinking skills," and "It forms links between concepts being develoited." From the cluster analysis, and Mrs. Morris'

interview, it seems kely that this upper cluster on the tree diagram represents a superordinate construct that is

central to her beliefs system. Thus, it would appear that high task difficulty, coupled with the ability to manipulate

objects and form associations between knowledge in a higher-order, conceptual fashion forms the basis for her

intrinsic valuation of mathematics.

Mrs. Morris' Students' Construct Organizations

Highly Motivated Students. Upon examination, it appears that the highly motivated students in Mrs. Morris'

class generally organize their motivational constructs similarly to their teacher (See Figures 3, 4, and 5). All three

of the identified students, Andrew, Carlos and Bob, proffered constructs that refer to task difficulty and challenge,

and learning and understanding mathematics better as central to their conception of what made mathematical activities

fun. In addition, Carlos, the most highly motivated student in the class explicitly referred to the hands-on nature of

mathematics activities as contributing to their motivational value.

Each of these constructs was central to the teachers' beliefs, and were central to how the teacher attempts

to build motivation into her mathematics classroom. In addition, the highly motivated students' constructs reflect

the model of intrinsic motivation presented earlier: The students' constructs revolved around themes of arousal,

control, and interest.

Carlos' construct organization seems to be organized around two major clusters. The first cluster (the top

cluster in figure 3) contains constructs most closely related to "It is fun." These constructs pertain to the

interestingness of the topics, their aid to Carlos' learning of mathematics, and their hands-on nature. The second

cluster contains constructs pertaining to aspects of arousal and control such as "It is easier to learn (than other

topics)," "It is more hard (than other topics)," and "You can control what is going on."

Bob also seems to have two major clusters of constructs that define intrinsic motivation in his mathematics
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experiences. The constructs organized most closely to "It is fun" pertain to task ease and being able to learn faster.

Interestingly, "It takes too long" was organized in this cluster. It is unclear exactly what this means at this time,

however, one possibility is that it represents the negative pole of the construct "It helps you learn faster," and thus

was rated similar due to being part of the same cognitive dialectic.

Andrew's construct organization is more difficult to describe. He has one clearly defined cluster of

construct that seems to deal with challenge, understanding, and enjoyment. The three other constructs that were

rated, "It is fun," "It is rather difficult," and "It is different (than what we usually do)," were also rated similarly to

each other, but were not included in the same construct in the additive analysis. It is unclear whether these ideas

are truly related significantly, or whether they represent other superordinate constructs not uncovered due to

experimental error.

In contrast to the similarity of personal constructs between these three students, Mrs. Morris' attempts at

rating her highly motivated students' constructs showed little relationship to her students' ratings. Correlations

between ratings for the teacher and these students ranged from .168 for Carlos, to .020 for Andrew, to .012 for Bob

(all non-significant, p > .01).

Upon examination of Mrs. Morris' organization of these students' constructs via Additive Tree diagram,

it becomes clear that she seems to have organized these constructs with attention to their semantic similarities, and/or

with respect to her own representation. For example, in reference to Bob's constructs (Figure 4), Mrs. Morris rated

"It really has no right answer," "It is fun," "it helps you learn faster," and "You learn more (than other topics)"

similarly. Bob's organization of these constructs in contrast, seems to be focus on his belief that having no right

answer makes a topic less motivating. He organized "It really has no right answer" closely to "I hate it," and "It

is stupid."

Lower Motivated Students. The first observation upon inspection of the construct organizations of the lower

motivated students, one is struck with the similarity of themes these students came up with compared to the more

highly motivated students (See Figures 6, 7, and 8). These students also seemed to focus on challenge and

understanding mathematics better as making mathematics activities more fun. Also, two of these students, Eric and

Duane, mentioned the hands-on, building aspect of Mrs. Morris' classroom. This is especially interesting with

respect to Mrs. Morris' explicit attention to providing these types of activities for her less motivated kids.

What is quite different from the highly motivated students' constructs is the apparent lack of differentiation

and organization of constructs made by these lower motivated students. Both the number and type of constructs

elicited was smaller for the less motivated kids and the additive trees appear to have less depth of organization.

It is unclear at this time whether these represent stable findings. These children may have had less motivation to

provide extra constructs, or may have tired of the ratings task on the computer. This seems unlikely, however,

because the stability of their ratings was fairly high (Test-retest reliability ranged from .76 for Allison, to .96 for

Duane, to 1.00 for Eric). In addition, the challenge aspect that was so apparent for the highly motivated students
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Bob's Construct Organization
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It is fun
Andrew's Construct Organization
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Mrs. Morris' Organization of Andrew's Constructs
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Figure 5
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Eric's Construct Organization
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Allison's Construct Organization
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seems to be shifted to an aversion of too challenging tasks, or an attention to the ease of completing those tasks that

are not too challenging. Thus, in Mrs. Morris' classroom, the beliefs about what makes mathematics motivating

seem to be fairly stable across groups. However, the salience of the different poles of a construct in defining an

intrinsically motivating activity (task ease vs. challenge, for example) seems to be related to a student's level of

motivation.

Interestingly, Mrs. Morris was much better at anticipating her lower motivated student's construct ratings

than her higher motivated students' ratings. Correlations between her ratings of Allison's and Duane's constructs

and these students' own ratings were .482 and .469, respectively (p < .01). This is informative in that Mrs. Morris

indicated in the interview that she pays less attention to her highly motivated students than her lower motivated

students when she plans her instruction. It seems that her attention to these students' motivations is related to her

ability to accurately predict their structure. However, for the lowest motivated student, Eric, Mrs. Morris' ratings

were, again, very low (r = .024, p > .01). It is unclear at this time what this discrepancy might indicate, save that

Eric's constructs were so undifferentiated that any attempt at organizing her thoughts may have led Mrs. Morris

astray.

Summary across classes

The nature of the constructs generated by students was similar across the classes studied. Students

invariably produced constructs that pertained to the difficulty of the tasks they were asked to perform, the challenge

the tasks afforded, aspects of tasks they liked or were interested in, and the aspects of control the tasks afforded such

as choice and ability fit. In addition, these constructs were similar in general to the constructs proffered by their

teachers. Teachers also alluded to the task difficulty, the challenge of the tasks, the control the tasks afforded, and

the novelty of tasks. For both students and teachers, the elicited constructs generally fit into the domains of interests,

arousal, and control, although there was a great deal of overlap fur individual representations.

Some of the variation across classes seems to be related to the influence of teachers' beliefs on their

students' constructs. For example, students in Mr. Smith's class reported that the applications of mathematics to real

life problems made some activities more fun than others. Mr. Smith placed a heavy degree of emphasis in his own

constructs organization on the role of mathematical applications. Miss Burton' students were more attuned to the

ease of performing their algebra activities than many of the students in other classes. Miss Burton's construct

organization indicated that she also placed a heavy degree of emphasis on task ease when evaluating the motivational

value of mathematics activities. Mrs. Morris (above) affirmed a belief that task difficulty and challenge, learning

and understanding mathematics, and hands-on activities were central to her conception of what made mathematical

activities fun. Her students, both highly and lower motivated groups, proffered similar constructs.

Although subjects in general were similar with respect to the nature and organization of their personal

constructs, many differences existed between the highly motivated students and the lower motivated students. The

' 0
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highly motivated students tended to generate more constructs that pertained to the challenge and difficulty afforded

by fun activities, while the lower motivated students tended to generate more constructs that pertained to task ease,

and several indicated that just understanding what to do, or having seen similar activities before made the tasks more

fun than others. Although these can all be thought of as relating to the degree of meaningful success students'

anticipated having in the activities, it seems that the more highly motivated students tended to focus on higher arousal

and less control in evaluating activities, while the lower motivated students tended to focus a:, lower arousal and

more control. In addition, although the teachers' did not perceive group differences to be much of a function of

ability, many of the teachers indicated that the lower motivated students had a lack of confidence in tackling

mathematics problems. Thus, it seems likely that "Ease/challenge" constructs may pertain to ability attributions (or

lack thereof) by the students--i.e., students may make a comparison of their perceived ability to the task requirements

to determine the intrinsic motivation they feel the activities will afford.

Teachers in general, were poor at predicting their students' construct ratings. The mean correlation between

teachers' ratings and their students' ratings was .2969, and the median correlation was similar (.2974). While this

association is significantly greater than zero (p < .01), on average less than ten percent of the variance between

teachers' ratings and students' ratings was common. Some interesting patterns did develop, however, when the

differences between teachers' accuracy for their highly motivated students were compared with the lower motivated

students. Table Fasts teachers' rank order of their students with respect to motivation in the mathematics classroom,

along with the correlation between teachers' ratings and students' ratings.

Similar patterns of accuracy were found between the two team teachers' predictions of their students'

ratings. Both Mr. Martin and Mrs. Longman were more accurate than the other teachers in predicting their students'

motivations. In addition, they were more accurate for their highest and their lowest ranked students than those

students in the middle. In their interviews, they indicated that they paid more attention to their lowest motivated

student, Archie, when developing their lesson plans, and in their instruction. Both teachers were most accurate for

this student.

Mrs. Morris, who indicated in her interview that she focused more on the lower motivated students in her

class when developing lesson plans, was most accurate for these students (Allison and Duane). Miss Burton, who

focused more on the class average due to her perception of a generally high degree of motivation in her class, was

much more accurate for her highly motivated students than her lower motivated students. It seems likely that, since

she focuses on the class average, these highly motivated students who have similar construct organizations to their

teachers', "fit" the classroom structure and the philosophy of the teacher better than the lower motivated kids, and

thus make it easier for her to predict their belief structures. Mr. Smith, who did not place a great deal of emphasis

on his students' motivations, at least on individual students' motivational characteristics, had very little idea of how

his students would complete the ratings task. His predictions showed almost no relation to his students' beliefs.

From this analysis, it is apparent that the emphasis that teachers place on motivation in their planning,

r, r
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Table 1.

Pearson Correlations between Teachers' Predictions of Students' Construct Ratings, and Students' Own Construct
Ratings. Students are Ranked on the Degree of Motivation they Exhibit in the Mathematics Classroom (1 = highest).

Teacher Student Rank r

Mr. Martin
Mark 1 .5224
Toni 2 .4872
Brenda 3 .4385
Ada 4 .4141
Archie 5 .5727

Mrs. Longman
Mark 1 .5528
Toni 2 .4835
Brenda 3 .2831
Ada 4 .4733
Archie 5 .6245

Mrs Morris
Carlos 1 .1676
Bob 2 .0120
Andrew 3 .0197
Allison 4 .4817
Duane 5 .4690
Eric 6 .0248

Miss Burton
Asa 1 .2590
Amy 2 .3116
Barb 3 .7320
Brian 4 .0267
Chris 5 -.1555
Don 6 .0996

Mr. Smith
Betty 1 .1637
Chuck 2 .1259
Billy 3 .0510
Arthur 4 .0774

Note: All bold correlations arcan .

especially how it pertains to the students they choose to focus on when developing and carrying out their plans

relates heavily on the degree to which they can anticipate the motivational charac tistics of their students. Teachers

who focus more on subgroups of children may be better able to predict these students' constructs due to the extra

attention they give these students in planning the class.

Teachers who focus on the class as a whole, or the class average may be able to predict certain students'

constructs better, especially in the case of highly motivated students, because the students' constructs are more

congruent with the teachers' personal beliefs. Teachers who do not focus on students' motivation when developing
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their plans, not surprisingly may be unable to accurately predict any of their students' beliefs. In addition, the extra

time available to the team teachers (Mr. Martin and Mrs. Longman) to discuss their plans, and to monitor the

behaviors of their students seems to be an invaluable aid to their being able to predict both high and low motivated

students' motivations in the mathematics class.

It is also apparent that the teachers studied are uninformed about the nature of motivation and its role in

the mathematics classroom. This is especially the case with respect to intrinsic motivation, the focus of this study.

Only one teacher, Mr. Smith, had courses specifically in the area of motivation, and few of the teachers studied had

any instruction on motivation in their teacher education courses. In addition, even Mr. Smith's predictions of his

students' motivations were very inaccurate, perhaps due to his lack of emphasis on motivation in developing his

plans. This lack of knowledge about student motivation is evident in the reliance of the teachers on extrinsic

motivators to stimulate their students. Most used reduced workloads, praise, and/or treats as rewards for good work.

In addition, the use of humor in the classroom, though important to keep the atmosphere of the class light, often did

not center around the content being taught, and may have diverted students' attention from the task at hand.

Competition was important for at least two of the teachers studied (the two males), and not surprisingly, it seems

to be more associated with challenge than control.

The lack of knowledge regarding motivation specifically within the mathematics education field is also

manifest in teachers' attention to the utility and importance of mathematics for students' future lives. As stated

earlier in this paper, students tend to believe that mathematics is both useful and important, but that these two

features are not sufficient to motivate them to achieve. With the similarities found kir these features in particular

between teachers' and students' construct organizations, it seems that these beliefs are cycled from teacher to student,

or from society in general to teachers and students, but that beliefs about the personal satisfaction individuals can

achieve through mathematical problem solving is not. Surprisingly, teachers were quite candid about their lack of

knowledge in this area, and most expressed some regret at not having the opportunity to learn more about student

motivation.

None of the teachers were observed making the types of overt attempts to motivate their students by

stressing that mathematics can be personally fun and exciting that were studied by Brophy, Rohrkemper, Rashid, and

Goldberger, (1983). However, when teachers' personal conceptions of motivation in mathematics are examined it

becomes clear that they did pay explicit attention to incorporating what they thought was motivating by using

examples of real life applications, grouping practices, hands-on activities, etc., in their classroom. For example, Mr.

Martin and Mrs. Longman used praise extensively throughout their lesson because both teachers believed strongly

that praise made students feel good about their work. They also verbally reinforced their beliefs that ease made

mathematics activities more motivating by telling the students, "This is not rocket science!" and other phrases that

made it clear that the students had the ability to perform the assigned tasks. Mrs. Morris created her Problem-

Solving station expressly for students to have the opportunity to extend their knowledge. Her construct organization

revealed that she personally believes that extension of knowledge makes mathematics intrinsically motivating for her.
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Mrs. Morris, Miss Burton, and Miss Saunders, the three teachers who had computers available for use all indicated

in their interviews and on their construct organizations that they see the computers in their rooms as a prime

motivator because they allow the students to be in control of their own learning. All three structured their lessons

such that the computers could be incorporated.

From the classroom observations and examination of the videotaped lessons, it became evident that the

teachers who were better able to predict their students' motivations in the construct ratings task also had a generally

higher degree of motivation for their classes than teachers who were less able to predict their students' motivations.

The team teachers for example who had the highest overall accuracy, had the highest overall class motivation. Their

students were on task, they were more animated, and they participated in the class discussion more than students in

the other classes. Mr. Smith, who had the lowest overall accuracy had students with an overall lower class level of

motivation. Students were generally on task, but showed less animation, and several appeared to be somewhat

listless and uninterested. Although these differences may be due to the differences in teaching style, the ability of

the team teachers to monitor their students' behavior better than the other teachers, or just random differences in

class personality, it suggests u It teachers who understand their students belief systems may be better at motivating

their classes in general than teachers who have less of an understanding of their students' motivations.

Discussion

Implications for Research

The results of this research indicate that although intrinsic motivation in the mathematics classroom is

individual, differing from teacher to teacher, and from student to student, many commonalities are present in the

overall types of constructs individuals use to evaluate mathematical activities, and these constructs fit nicely into the

model of intrinsic motivation developed by Middleton, Littlefield, and Lehrer (1992). However, different individuals

place differing levels of emphasis on the constructs they use in their evaluations. Some subjects placed a high degree

of importance on stimulationchallenge, novelty, lack of boredom, etc. Interestingly, though not surprisingly, these

individuals also tended to place less of an emphasis on issues of control such as free choice, and ability attributions.

Other subjects placed a high degree of importance on levelQ of control, and less of an emphasis on stimulation. It

is apparent that this trade-off between arousal and control is extremely important in developing a healthy appreciation

for doing mathematics, or conversely, learning to dislike mathematics.

The application of personal constructs psychology to the problem of understanding teachers' and students'

motivation has proven to be powerful in so far as uncovering important individual differences between students, or

groups of students, and their teachers. The multiple sources of information utilized (observation, interview, construct

ratings) has created a method of triangulation that makes sense of the great diversity of teachers' and students' belief

systems. Results from the teacher interviews augmented their construct elicitation and ratings, and provided

examples of how teachers' constructs are useful in creating their instructional plans.

As a descriptive model, the model of academic intrinsic motivation developed by myself and colleagues
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(Middleton, et al., 1992) held up well in th- general sense. However, it seems limited at this time in describing any

particular individual's system for determining the intrinsic motivation afforded by different mathematics activities.

This is perhaps due to the "snapshot" quality of the present study--I looked at teachers' and students' constructs for

activities they had already engaged in. It will be interesting to develop a study that looks at change in teachers' and

students' construct organizations over time as they engage in specific activities that vary in the degreeof arousal and

control they afford. Thus, a more fine tuned, longitudinal experiment should reveal ways in which persons actively

organize activities into their self systems, and should provide a more rigorous test of the theory.

The importance of studying motivational constructs within the domain of mathematics specifically was also

reinforced by the results of this study. Most of the participating teachers revealed that they assess the mathematical

abilities of their students, and this assessment is related to the degree of motivation students exhibit. Moreover, most

of the students' mathematical deficiencies were reported by the teachers to be idiosyncratic with respect to

mathematics, not manifesting themselves in other content areas. In addition, many of the constructs uncovered by

teachers and students were directly tied to the types of a tivities they were asked to contrast in the elicitation task.

For example, "You can make awesome geometric designs" was proffered by Lee, one of Miss Saunders' students.

This construct seems to stem from the domain of mathematics, and not from other content areas.

With respect to the questions of interest for this paper, results are highly informative, and extend our

knowledge with respect to the motivational characteristics of teachers and students, and how these might play off

each other in the instructional milieu. In this respect, results are interpreted in terms what von Glaserfeld (1985)

and Steffe (1988) called "radical constructivism," as opposed to "trivial constructivism."

In trivial constructivism mathematics for children exists in ontological reality. In radical constructivism,
the mathematical knowledge of the other is taken as being relative to one's own frame of reference and can
be known only through interpreting the language and actions of the other--only by forming a possible
conceptual model...It is taken as a "fit" rather than as a "match."

Results indicate that overall, students ana teachers have developed similar belief structures with respect to

their intrinsic valuation of mathematics. Both the highly motivated students and lower motivated students were

concerned with aspects of arousal and control, as were their teachers. While these general categories were similar

across groups, individuals tended to construct different representations depending upon the perceived trade-off

between arousal and control, and their differing interests. In addition, several of the students made self-statements

in their constructs organizations referring to the amount of pride they feel when they accomplish a difficult task, their

beliefs about their abilities, and their prior knowledge of mathematics. These self-statements have been uncovered

before (Middleton, Littlefield, and Lehrer, 1992). These results go beyond the attribution literature in that they help

define the content of students' and teachers' attributions vis a vis individual differences in arousal and control

tradeoffs, rather than merely defining the attributional structure common to large groups of individuals. Thus, the

locus and stability of teachers' and students' attributions of success and failure do not seem to be important except

as they relate to the ways in which individuals define success and failure in the first place.
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Overall, teachers were poor at predicting their students' motivational constructs. However, results also

indicate that teachers can assess the motivations of some of their students with a fair degree of accuracy but the

degree of accuracy seems to be a function of which students teachers tend to focus upon when developing and

carrying out their lesson plans, and to some extent, the similarity of the students' constructs with their own.

Indeed these findings make much more sense than the original hypothesis especially when teachers reasons

for focusing on different students are taken into account. Teachers indicated that they focus on a small number of

specific children (usually lower motivated students), subgroups of the class, or the class "average" to reduce the

complexity of planning, and to reduce their own feelings of failure when they do rot reach all of their students. In

addition, at least one teacher did not focus on any particular student because she felt the class in general had a fairly

high degree of motivation, and this freed her up to concentrate more heavily on the content being covered. Thus

the realities of dealing with 30 students in a class inhibit a single teachers' ability to pay specific attention to most

of their students, and as a consequence, many teachers have little idea of how their students are motivated

intrinsically.

Teachers personal constructs of what makes mathematics intrinsically motivating do seem to play a major

role in the types of activities and examples they choose and design. Teachers who believed that the utility of

mathematics was a motivating factor tended to use more real-life examples. Teachers who believed that ease made

activities more motivating emphasized the ease in which problems could be solved, and provided examples that

illustrated lack of difficulty. Teachers who emphasized challenge, tended to create instances where students could

go beyond the regular material. However, this knowledge must be tempered with the fact that the textbook was still

viewed as the source of the curriculum for most of the teachers, and any modifications these teachers made in

creating their plans were hampered by the traditional presentation of the texts. Most modifications centered around

the development of examples that illustrated the content presented in the text, rather than development of a context

through which the content could be discovered.

Teachers did attempt to provide examples that tied with what they believed their students' interests were.

However, since the teachers did not focus on most of the participating students in developing their plans, they had

to make a best guess at what their students might find interesting. Many times their guesses were successful, but

many times they were not.

Teachers' attention to arousal issues such as novelty, fantasy, and challenge seemed to stem from their own

belief systems, hampered by the particularly non-novel textbook presentation. When teachers perceived a way to

make the material more stimulating for students, they were quick to incorporate stimulation into the lesson.

However, it was interesting to note that several attempts to "stimulate" the students involved extrinsic rewards. It

is unclear to what extent the teachers perceived these rewards to be stimulating for the students with regards to the

task, or whether the rewards were seen as stimulants to induce the students to perform an unrewarding activity.

All of the teachers studied wanted to challenge their students in mathematics, and most were successful.
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Each tried to allow students to go beyond the task requirements if they desired, and in different ways, they

encouraged this in the classroom. Mrs. Morris developed the Problem Solving station for this purpose. Miss Burton

allowed a student to create test items that would stump her. Mrs. Longman and Mr. Martin utilized mathematical

puzzles and brain teasers. Mr. Smith used competition and had students gather data from home. Miss Saunders used

difficult stock market data to allow students to draw out mathematical patterns. The most important finding with

respect to stimulation in mathematics that comes from the present study is that what teachers feel is novel,

challenging, or that requires imagination will determine to a large degree what they incorporate into the lesson.

With respect to control, all of the teachers indicated that they did not give the students much in the way

of free choice of activities. They attempted to provide choices with respect to students' presentation of results, the

order in which problems could be solved, and in the strategies students could choose in solving problems, but did

not provide students with a wider variety of problem solving situations from which they could freely choose the

activities that interested them.

In tailoring the requirements for participating in mathematics activities, the teachers did try to provide

control for their students in various ways. Most teachers created a set of activities for the "average" student and

allowed the students who would choose to do so go further. The three teachers who had computers available

perceived that the technology allowed students to assert a higher degree of control over the learning process, saw

this as beneficial, and incorporated computer programs into the curriculum. Several teachers used small groups so

that students could teach each other, or used students in the class to teach the rest of the class.

Again, the ways in which teachers incorporated aspects of control into their classes seemed to stem from

their own beliefs about control. As mentioned before, ease was one of the primary control factor several teachers

attempted to make real for their students.

Implications for Instruction

In the process of interviewing the teachers I did notice that all of the teachers were in states of transition

with respect to how they approached mathematics instruction. They were searching for new ways of presenting

material, were developing units of their own they felt would be more motivating, and were aware that mathematical

content and pedagogy are changing. Several of the teachers were relatively new to the field of mathematics teaching,

and as such, were just beginning to develop a repertoire of redagogical strategies and pedagogical content knowledge

unique to their mathematics classes. Moreover, all of the teachers indicated that they were committed to the

betterment of their students, and were committed to helping their students become more successful in their future

lives.

Tnese attitudes, though not unique, when coupled with the desire for change, seem to be influencing the

participating teachers to begin the difficult struggle out of the inert system in which they were educated. It will be

interesting to do as Mr. Smith requested, "...to be able to come back in five years and do the same sort of thing and

see where I am as far as mathematics," for my intuition is that although the general philosophies of the teachers will

( a
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be similar, the ways in which they view their students in relation to mathematics instruction will be quite different.

One prescriptive statement that should perhaps be made at this time is that explicit attention to the

motivational characteristics of students in the mathematics classroom should be paid in the pm- and inservice

education of middle school mathematics teachers. Teachers in the present study had little if any training with respect

to student motivation, and this perhaps hampered their ability to predict the organization of the motivational

constructs generated by their students. Future research should also attempt to inform teachers regarding their

students' motivational systems, much in the same way as the Cognitively Guided Instruction (CGI) project

(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989) informs teachers about their students' knowledge and

strategies with regards to addition and subtraction. Then the ways in which teachers' knowledge about their students

are incorporated into their planning, instruction, and assessment can begin to be articulated. Admittedly, the

explicitness of the information teachers receive in the CGI project cannot begin to be approached by the research

on motivation, the general model of providing teachers with the latest knowledge regarding students' motivation in

mathematics may at least give teachers a basis with which to make informed pedagogical decisions.

However, given that teachers are highly influenced by their own mathematics teachers in high school an

college or their peers who are teachers, more than their teacher education courses (Middleton, Webb, Romberg, &

Pittelman, 1990; Romberg & Middleton, in preparation), this kind of pre- and inservice education must be both

continual and collaborative. Moreover, given that the mathematics content itself has historically been rigid,

inflexible, rule-oriented and tedious, education on motivation itself will not suffice.

Conclusions

Intrinsic motivation in mathematics is a highly complex, individual process affected by a number of factors

including classroom environment, teachers' beliefs about their students and mathematics, and students' beliefs about

themselves in relation to mathematics. As its very name implies, intrinsic motivation is dependent upon the

individualthe person's construction of reality, and their place in the reality they construct. Students can place

themselves in the center of their mathematical reality, becoming agents impacting upon the content to augment their

learning, or they can place themselves on the periphery of their reality, becoming "pawns" to be impacted upon (see

de Charms, 1968).

The congruence between teachers' and students' conceptions of what makes mathematics instruction

intrinsically motivating becomes less important in this respect than how teachers' and students' view each other and

their roles in the structure of the classroom. The teacher who views their role as facilitator of knowledge, rather than

the ultimate authority, or worse, the translator of the text, has the most opportunity to view the student as agent, and

design activities that allow the students to take charge of their learning. However, it is still unclear whether students

who have not ordinarily found mathematics to be motivating intrinsically, would actually take control of their own

learning given the chance. If such students' self systems are highly preemptive, then Kelly's Choice Corollary

(1955) would suggest that they would attempt to choose a view of their role as pawn over the new role offered since
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it serves to extend their self image. Thus, nothing less than a radical reorganization of roles where the old systems

do not function seems to be the logical course of action. Only in a system where all actors are viewed by each other

as agents, equal in authority, different in expertise, andwilling to cooperate on important tasks can such entrenched

self systems begin to be eroded.

It can only be hoped that the results of research on motivation in the classroom of which this study is but

a small part, will provide practitioners with the knowledge they can use to effect such a change in their classrooms.

However, one of the important issues not addressed in this study is the appropriateness of the actual content being

explored. From the radical constructivist perspective, students and teachers will fabricate their own reality - -their own

vision of what mathematics isregardless of the coherence and consistency of the curriculum. Thus, a student who

is motivated intrinsically by inconsistent content, full of loopholes and gaps in logic, will develop a system that will

cease to function adaptively given the need for consistency in representation for negotiation of meaning. Ultimately,

such a student will be ill served by his or her education, the fun they experienced notwithstanding.
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